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The diiron unit in the H-cluster of Fe-only hydrogenases, Figure C\"\Sy_&' N /f—/ " HCl(aq), MeOH ”\—\ Ll 7
1, is unique in its precedent for low-valent organo-metallic E‘ZIM Fe NH,PF, ’ - ®</
molecules as structural and spectroscopic modélThus the ‘\P —lﬁpk \W(’[ >\"5\

bridged dithiolato compleg, (u-pdt)Fe(CO) (pdt= SCHCH,- “
CH,S)? the bridge-modified derivativesu{SCHN(Me)CH,S)- 1 .
FeCOW® (i-SCHC(HICHSMe)CHS) Fe(CO) and dicyano  "(€0) 1975 1942. 1898 em AL
derivatives such agupdt)[Fe(CO}CN)],=, complex2,8 dem- _ T
onstrate that FE€ dinuclear complexes match the major geo- Figure 2. Structures and spectra 8fand B-H*]PFs™

metrical features of the available active site structures. The Fe
Fe distance of 2.6 A observed in four protein crystal structures,
is similar to those found for the &g model complexes. Not
seen in ground-state structures of the latter is the bridging or semi-
bridging CO shown in Figure 1? Infrared spectroscopic studies

of enzymes derived frordesulfaibrio desulfuricansas well as

D. wulgaris, indicate that the:-CO switches to terminal in the
reduced form&:1° According to the crystallography, this evokes

a minor structural rearrangement, retaining the shortfFe
distance’.

Iron—iron bonded moieties are extremely attractive as reactive
units. DFT calculations have characterized the HOMO of complex
1 as the Fe-Fe bond density, providing a site for reactivity with
electrophiles!'? Herein we describe reactivity of Fe and
[Fé'—H—F€']* complexes that is consistent with the chemical
characteristics/activity of the enzymes.

Hydrogenases convert protons and electrons infodiersibly,
Figure 1. The active site, and functional models thereof, are thus
required to take up Ktypically assayed in enzyme activity studies _
by H/D exchange processes,(H, — HD and H/D,O — HD/ (u-pdt)[Fe(CO}CN)],” + H" —

From the dinuclear FEE complexes described above as
structural models, P&€' complexes are expected to result from
protonation, engaging the F&e bond density in the formation
of a bridging hydride species. The all-carbonyl compleis of
insufficient basicity to form a stable conjugate aciqGO) of
(u-pdt)Fe(CO) = 2074, 2036, and 1995 cr). However, as
indicated byv(CO) values lowered by ca. 100 cfpthe electron-
rich character of the dicyano derivatiZe allows reaction with
HCI, eq 1. The subsequent positive shift«(fCO) andv(CN)
values, as well as high field resonances intH&NMR spectrum,
are evidence that protonation has produced a bridging hydride,
[Fe'—H—F€']*. This reaction is complicated both by the presence
of cyanide positional isomers in the reacté&fiexplaining the
presence of two hydride resonancesl6.1 and—19.7 ppm) in
the product, as well as the protonation of iron-bound cyanide,
presumably producing a labile CNH ligand and overall instabil-
ity.17

DOH), and activate it heterolytically, (HH").131*As H, binding -H)(u-pdt)[Ee(COMCN)],~ (1
is prominent in @ metal complexe&; whereby the acidity of ki (u-H)(u-pdtFe(COYCN), - (1)
is greatly amplified a role for Fé in H, uptake and H/D »(CN) 2075 2108 et

exchange is suggested.
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Figure 3. 2H NMR spectrum of B-enriched [3H*][PFs7], 8 bar Dy.

Various NMR active nuclei ing-H)(u-pdt)[Fe(CO)PMe;)] "
PR~ permit study of H/D exchange processes. Following the
procedure of Sellmann et &:2°medium-pressure NMR sample
tubes containin@-H* PR~ dissolved in CHCI, were pressurized
with D, gas to 78 bar. After ca4 h atroom temperature and
ambient laboratory lighting, th# NMR spectrum was measured,
showing dissolved Pat 4.63 ppm, natural abundance CDHCI
at 5.32 ppm, and a small triplet in the high field regietl5.28
ppm, J-p = 3.32 Hz, Figure 3. The intensity of this triplet
increased slowly under laboratory light and was dormant in the
dark. When exposed to sunlight (Texas, July), extensive H/D
exchange occurred within 3 h.

The 'H NMR spectrum of the BD-enriched3-HT PR~
indicated loss of intensity of the bridging hydride resonance at
—15.3 ppm. The proton-decouplé® NMR spectrum showed
only resonances for the PF the PMg in 3-H* PR~ at 21.46
ppm, and a 1:1:1 triplet from PMeén 3-D* PR~ at 21.54 ppm
with Jpp of 3.32 Hz. Solutions 08-H* PR~ dissolved in C>-

Cl, placed under 12 bar £exhibited in thetH NMR spectrum a
1:1:1 triplet centered at 4.57 ppm wilb_y of 42.8 Hz indicating
the presence of HEP.2° Catalysis in the H/D exchange frompH
D, mixtures at 6 bar each and ca. 3.841" PR~ in CH.Cl,
was illustrated by*H NMR detection of HD in amounts H,.
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CH,CI, pressurized with Bshowed a minor amount of tfg&D*
signal under the standard photolysis conditions (3 h sun).

Exchange of deuterium fromJD into samples 08-H* [PF7]
in CH,Cl, was not observed. However, with acetone solvent, a
slow exchange occurred, which accelerated on addition of small
amounts of PPNCI~. Likewise, H/D exchange with MeOD in
CH.Cl, required added Cl to serve as a proton-carrier or
abstracting ageri® overcoming the kinetic inertness/barrier of
proton transfer fron8-H* [PFs7].23

This work illustrates that a protonated Hee bond in the
dithiolate, diiron complexes which serve as structural and
spectroscopic models of the Fe-onlyade active sites, satisfies
the requirements for the enzyme-activity assays of H/D exchange
from H,/D, gas mixtures as well as from,HD,0. Promotion of
the Dy/3-H* H/D exchange reaction by sunlight, and its inhibition
by CO imply that an open site for Dbinding prior to D-D
cleavage is a key step in the reaction path. The lack of reactivity
in CHsCN is consistent with the results of Morris et al., that<H
CN is a better ligand for Fethan is H.1°

While CO dissociation may account for the open site, structure
A, also appealing is a hydride shift from bridging to terminal
position,B. The binding of D at the site proximal to the bridging
hydride, displayed below as structu@ would lead to the
exchange irC'.
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A noteworthy conclusion from this suggested reaction path, is
that the hydride, generated from"tand electrons from two Ee
serves as an internal base for the heterolytic cleavage 'bf Fe
bound B. There is no requirement for another base to be built
into this model, the suggestion of which for the Fe-onkast
active sité has guided theoretical stuciéand synthetic prograrfs
into the production of an S-to-S linker containing a central amine
functionality. Should the 3-light atom S to S linkeot be designed

That there was no decomposition was indicated by the infrared to provide this built-in base, we suggest its importance is in

spectra of D-exchanged samples which showeg¢CD) region
identical to the original samples. Pressurization with ¢és
returned the D-exchanged product to the protio form. Under
photolysis, 1*CO-saturated solutions 08-H" PR~ showed
exchange with intrinsic?’CO completely reversibly, with no
apparent PMgloss.

Despite these indications that the H/D exchange reaction was

cleanly reversible and the coordination spherg-6f" was intact,
another’H signal in the range of 1.7 to 2.8 ppm emerged during
the reactions in CKCl, This resonance does not appear in acetone
solutions or with triflate as counterion. Integration of thé
spectrum of samples from extensive/lD exchange suggests no
D-exchange into PMg pdt, or solvents. The possibility of some
decomposition involving insolubles and DPM®r RSD is under
investigatiore?

While the presence of dissolved i pressurized solutions of
3-H' [PFs7] in CH3CN was evident from théH resonance at
4.61 ppm, there was no exchange into the bridging hydride
position. In addition, CO-saturated solutions3»H* [PF;] in
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2026

(2i) Jessop, P. G.; Morris, R. thorg. Chem 1993 32, 2236.

maintaining the butterfly 2Fe2S core and optimally short
Fe- -Fe distances, throughout the"lFe' reaction process. This
work also shows that the formation of a bridging or terminal
hydride is a reasonable activation step in the enzymatisgdthke
process.
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